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Abstract
The structural evolution in silica sols prepared from tetraethoxysilane (TEOS) sonohydrolysis
was studied ‘in situ’ using small-angle x-ray scattering (SAXS). The structure of the gelling
system can be reasonably well described by a correlation function given by
γ (r) ∼ (1/R2)(1/r) exp(−r/ξ), where ξ is the structure correlation length and R is a chain
persistence length, as an analogy to the Ornstein–Zernike theory in describing critical
phenomenon. This approach is also expected for the scattering from some linear and branched
molecules as polydisperse coils of linear chains and random f -functional branched
polycondensates. The characteristic length ξ grows following an approximate power law with
time t as ξ ∼ t1 (with the exponent quite close to 1) while R remains undetermined but with a
constant value, except at the beginning of the process in which the growth of ξ is slower and R
increases by only about 15% with respect to the value of the initial sol. The structural evolution
with time is compatible with an aggregation process by a phase separation by coarsening. The
mechanism of growth seems to be faster than those typically observed for pure diffusion
controlled cluster–cluster aggregation. This suggests that physical forces (hydrothermal forces)
could be actuating together with diffusion in the gelling process of this system. The data
apparently do not support a spinodal decomposition mechanism, at least when starting from the
initial stable acid sol studied here.

1. Introduction

The structure and the kinetics of formation of alkoxyde-derived
silica gels have been the object of several studies [1–8].
The overall sol–gel process of silicon alkoxydes deals with
hydrolysis and polycondensation reactions of the precursors
through a series of possible events that lead to the evolution
of the gelling system from the initial homogeneous sol of
silicon oligomers up to the final gel. The structure of the
final gels depends upon the initial conditions of preparation
and, in particular, strongly on the pH conditions for the
hydrolysis and polycondensation. It is generally accepted that
hydrolysis under acid conditions and excess of water leads
to the formation of gels with structure that can be described
as a mass fractal probably formed by clustering of branched
polycondensates or linear chain coils.

The structural evolution of the gelling system has been
discussed on the basis of chemical mechanisms, mainly at

the beginning of the process [7] and, more recently [6, 8],
of physical restructuring which can take the form of a
phase separation. The sol–gel transition which accompanies
the formation of silica gels from hydrolysis of silicon
alkoxydes has been thought of as an analogy to the critical
phenomenon [9–13]. In this sense, there would be a correlation
between the time evolution of the (irreversible) gelling system
and the equilibrium temperature as the critical point is
approached in the phase transition associated to the critical
phenomenon [14].

In a previous work [5], using small-angle x-ray
scattering (SAXS), we studied the kinetics of aggregation
of tetraethoxysilane-(TEOS)-derived gelling systems prepared
from solventless TEOS sonohydrolysis, in a two-step acid–
base process. It was concluded, on the basis of a mass fractal
approach, that the structural evolution associated to the gelling
system can be described in terms of the evolution of small
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clusters which are formed in the homogeneous stable sol in the
acid step (pH = 2). The clusters seem to be lightly restructured
on passing to the base step (pH = 4.5) and the structure evolves
by means of an aggregation mechanism, in which the mass
fractal dimension D is kept at an approximately constant value
(D ∼ 2), while the characteristic length of the mass fractal
structure is increased up to the formation of a gel. The sol–
gel structural evolution seems to be timescaling since the same
picture is observed as the aggregation temperature is varied [5].

In this work, we realized that the structural evolution of a
TEOS-derived gelling system prepared from sonohydrolysis of
TEOS could be equally well described in terms of a very simple
model on the basis of the Ornstein–Zernike theory [14] in an
analogy to the phase transition in critical phenomena. This
approach is also expected for the scattering from some linear
and branched molecules as polydisperse coils of linear chains
and random f -functional branched polycondensates [15]. The
results and implications are discussed on the basis of this
simple model.

2. Experimental procedure

TEOS, distilled and deionized water, and hydrochloric acid
were used to prepare samples of about 76 ml of a TEOS–water–
HCl reactant mixture with water/TEOS molar ratio equal to
6.5 and pH = 2.0. Hydrolysis of the mixture was promoted
for 10 min under action of constant power (∼0.7 W cm−3)
ultrasonic radiation. The hydrolysis is almost complete within
5 min under these experimental conditions [16]. Next, the
sample was diluted in 28.6 ml of water and sonication was
continued for more than 2 min for complete homogenization.
The final water/TEOS molar ratio of the resulting sol was
equal to 14.4, which is equivalent to a silica concentration of
∼2×10−3 mol SiO2 cm−3. This value corresponds to a volume
fraction φ of silica approximately equal to 0.06. The sol was
studied as obtained by SAXS. The pH of the resulting sol was
adjusted to 4.5 by addition of NH4OH and the time evolution
of the SAXS intensity was measured ‘in situ’ at 60 ◦C. The
sample was injected in a 1 mm thickness laminar space sealed
with 10 μm-thickness Mylar sheets and placed in a special
sample holder with temperature control.

The SAXS experiments were carried out using syn-
chrotron radiation at LNLS (Campinas, Brazil) with a wave-
length λ = 0.1608 nm. The beam was monochromatized
using a silicon monochromator and collimated by a set of
slits defining a pinhole geometry. A one-dimensional posi-
tion sensitive x-ray detector was used to record the SAXS
intensity as a function of the modulus of the scattering vec-
tor q = (4π/λ) sin(θ/2), where θ is the scattering angle,
from q0 = 0.18 nm−1 up to qm = 4.4 nm−1 in intervals of
�q = 3.36 × 10−3 nm−1. The data were corrected by the par-
asitic scattering and the sample attenuation and normalized by
the beam intensity.

3. Results

Figure 1 shows the time evolution of the SAXS intensity I (q)

as measured ‘in situ’ for the gelling system at pH = 4.5 and

Figure 1. The time evolution of the SAXS intensity at 60 ◦C for the
gelling system prepared from TEOS sonohydrolysis. Times are given
in minutes. The solid lines are fittings of equation (1) to the
experimental data, using a nonlinear least squares interaction routine
(Levenberg–Marquardt algorithm).

60 ◦C. The data were compared with the SAXS intensity of
the original stable sol at pH = 2. The sample associated
with the last time of measurement was named ‘gel’ although
the gel point could not be so easily defined in this system.
All the curves follow approximately the relationship q−2 at
some extension of the high q region and approximately a
Gaussian curve at low-q . At the gel point, the intensity
practically follows the relationship q−2 in almost all the range
of q studied in the present work, except at very low-q .
The dependence q−2 is expected to be produced from large
subsections of polydisperse coils of linear chains or branched
polycondensates of random f -functional elements [15, 17].
The low-q regime is produced by the finite size of such
macromolecules or clusters.

A convenient description of both the regimes, at low-
q and high-q , for the SAXS intensity can be made using
the simple Burchard approach for polydisperse coils of linear
chains or branched polycondensates of random f -functional
elements [15]. That is the same relationship from the
Ornstein–Zernike approximation in the description of the
critical phenomenon [14] and can be cast as

I (q) = I (0)/(1 + ξ 2q2) (1)

where ξ is the correlation length of the structure, a parameter
which is proportional to the radius of gyration (RG =
31/2ξ ) of the macromolecule or cluster, and I (0) accounts
for the intensity at q = 0. From the Ornstein–Zernike
approximation [14],

I (0) ∼ ξ 2/R2 (2)

where R is called the Debye persistence length in the case of
linear chains [17], but here we regard it as a phenomenological
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Figure 2. Zimm’s plots showing the time evolution of the
(irreversible) gelling system as an analogy with the critical point
approaching the critical phenomena.

Table 1. Evolution of the structural parameters of the gelling system
at 60 ◦C.

t (min) I (0) (arb. units) ξ (nm) R/Rsol

0 (sol) 0.91 ± 0.01 0.838 ± 0.008 1.00 ± 0.04
5 1.56 ± 0.02 1.19 ± 0.02 1.08 ± 0.04

10 2.36 ± 0.03 1.51 ± 0.02 1.12 ± 0.04
15 3.53 ± 0.03 1.90 ± 0.03 1.15 ± 0.04
20 5.21 ± 0.05 2.34 ± 0.03 1.17 ± 0.04
35 14.0 ± 0.1 4.02 ± 0.05 1.22 ± 0.04
50 31.4 ± 0.3 5.94 ± 0.07 1.20 ± 0.04
65 59.2 ± 0.5 8.07 ± 0.09 1.19 ± 0.04
80 91.4 ± 0.9 9.84 ± 0.09 1.17 ± 0.04

100 (gel) 124 ± 1 11.2 ± 0.1 1.14 ± 0.04

parameter since we have no way to determine it in absolute
units of length. Equation (2) also holds for the scattering from
a mass fractal cluster with characteristic length ξ (constant
R) and mass fractal dimension D = 2 [18]. Figure 1 shows
equation (1) fitting reasonably well to the experimental SAXS
data. Table 1 shows the time dependence of the values fitted
for I (0) and ξ , and also for the relative variation R/Rsol of the
persistence length R with respect to the value of the sol (Rsol).
R/Rsol was determined from the relative variations of I (0) and
ξ through the relationship R/Rsol = (ξ/ξsol)[I (0)sol/I (0)]1/2.
I (0) and ξ increase with time while R/Rsol is practically a
constant value, after a rapid increase of about 15% at the
beginning of the process.

Figure 2 shows the Zimm plots I (q)−1 versus q2 for the
gelling system. The time evolution of the intercept I (0)−1 in

Figure 3. Bottom: Kratky’s plots along the evolution of the gelling
system. The dotted lines in the region q < q0 are data extrapolated to
q = 0 using the parameters I (0) and ξ obtained from the fittings of
equation (1). Top: time evolution of the invariant Q and of the
structure characteristic length ξ .

the Zimm plots, going to zero as the gelling system approaches
the gel point, is mainly associated with the increase of the
correlation length ξ of the structure, while the minor variation
in the slope of the Zimm plots is mainly associated with
variations in the persistence length R.

Figure 3 (bottom) shows the Kratky plots q2 I (q) versus
q for the gelling system. All the curves reach plateau values
at some extension of the high-q region, as expected for the
dependence ∼q−2 found for the intensity there. The most
striking feature of the particle scattering factors of the other
branched models is the appearance of a maximum in the Kratky
plots [15].

For a two-phase system of volume V , as is the case for this
silica-liquid two-phase system in which the volume fractions of
the phases are φ (silica) and (1−φ) (liquid), the SAXS intensity
integrated over the reciprocal space q , a quantity usually called
the Porod invariant, is given by

Q =
∫ ∞

0
q2 I (q) dq = 2π2(�ρ)2φ(1 − φ)V (3)

where (�ρ) is the difference in the electronic density of the
phases. The integral Q is expected to be constant during
structural transformations in which (�ρ) and the volume
fractions φ and (1 − φ) are kept constant. Q was evaluated
numerically within the experimental range q0 � q � qm

and by extrapolation of I (q) using equation (1) in the range
0 � q < q0. No extrapolation for I (q) in the range q > qm has
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Figure 4. Left axis: the SAXS intensity I (0) extrapolated to q = 0
following an approximate law I (0) ∼ ξ 2. Right axis: the number of
clusters per unit volume of the sample as evaluated from equation (4)
(circles) and from equation (5) (triangles). The proportionality
constant of equation (4) was adjusted to match equation (5) at
ξ = 5.9 nm.

been assumed for evaluation of that contribution on the integral
Q, so it has been neglected.

Figure 3 (top) shows that Q is practically a constant
value during the stage studied in the present work. Then,
the difference of the electronic density between the phases
(particles and liquid matrix) and the volume fractions φ and
(1 − φ) of the phases are approximately constant along the
transformations accompanying the gelling system. Figure 3
(top) shows the time evolution of the characteristic length ξ

along the gelling process. ξ increases approximately following
a power law with time t as ξ ∼ t1 (with an exponent quite
close to 1), after an initial period of about 15 min in which
the increase of ξ with time is an ill-defined power law growth
with exponent varying between 1/3 and 1/2 (figure 3). The
ξ ∼ t1 growth of the present work is more rapid than that
earlier RG ∼ t1/2 observed by probing the radius of gyration
directly from Guinier’s law instead of ξ from equation (1) [5].
It could be due to the fact that equation (1) seems to describe
better the entire curve of SAXS in this system.

Figure 4 shows equation (2) describing well the relation
between I (0) and the correlation length ξ along the gelling
process, except during that mentioned initial period of rapid
increase of about 15% in the persistence length R. For a system
of macromolecules in solution, the intensity I (0) scattered
at q = 0 is proportional to the mass concentration c0 and
to the molecular weight M of the macromolecule [19], so
I (0) ∼ c0M . In the case of macromolecules which behave
as mass fractal clusters with characteristic length ξ and mass
fractal dimension D = 2, as is the case of the present system,
the molecular weight scales as M ∼ ξ 2 [18]. Since the number
of macromolecules or clusters in the volume V of the sample
should be N = c0V/M , then the number of macromolecules

or clusters per unit volume of the sample NC = N/V should
be

NC ∼ I (0)/ξ 4. (4)

Figure 4 shows the evolution of NC as determined from the
ratio I (0)/ξ 4.

4. Discussion

The lack of an upturn in the curves of the Zimm plots
(figure 2) at high q is typical of polydisperse coils of linear
chains or random f -functional branched polycondensates [15].
The evolution of the plots in figure 2 at small q is in
perfect analogy with the predictions of the Ornstein–Zernike
theory of critical phenomena as temperature approaches the
critical point [14]. There is a correlation between the
time evolution of the (irreversible) gelling system and the
equilibrium temperature as the critical point is approached in
the phase transitions associated with critical phenomena. In
this case, the correlation function γ (r) of the structure is given
by γ (r) ∼ (1/R2)(1/r) exp(−r/ξ) [14].

The lack of a maximum in the Kratky plots (figure 3—
bottom) is also typical of random polycondensates, but
the scattering from random branched polycondensates is
indistinguishable from that of the most probable distribution
of polydisperse coils of linear chains [15]. The functionality f
of the branching units seems to be less than 3 for the lack of a
maximum in the Kratky plots [15].

The constancy of Q along the gelling process in the
system studied here suggests an aggregation process by a
phase separation by coarsening. The power law ξ ∼ t1

growth of the clusters found after an initial period suggests a
mechanism of growth which is more rapid than the typical ξ ∼
t1/3 or ξ ∼ t1/2 for pure diffusion controlled cluster–cluster
aggregation mechanisms. It has been pointed out that physical
forces (hydrothermal forces) should be actuating together with
diffusion in the gelling process of this system [6, 8]. This
could be the case of the gelling system studied here. However,
the lack of a maximum in the curves I (q) does not support a
mechanism of phase separation by spinodal decomposition.

The evolution of the number of clusters NC per unit
volume of the sample in absolute cm−3 units could be
estimated with good approximation for the present system from
the knowledge of the characteristic length a of the primary
particle and of the volume fraction φ of the silica particles. If
m0 is the mass of the primary particle building up the mass
fractal cluster with molecular weight M and characteristic
length ξ , then M = m0(ξ/a)D [20], or simply M = m0(ξ/a)2

for the case of the present system with D = 2. Since
c0V = n0m0 and φ = n0a3/V , where n0 is the number of
primary silica particles in the volume V of the sample, then
NC = c0/M could be cast with good approximation by

NC = (φ/a)ξ−2. (5)

There is no crossover at high-q in the SAXS curves
(figure 1) accounting for the characteristic size a of the primary
silica particle. So, a should be smaller than the experimental
1/qm ∼ 0.23 nm. As a conservative position, we assumed
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a ∼ 1/qm ∼ 0.23 nm in order to express NC in absolute cm−3

units in figure 4. Equations (4) and (5) are in good agreement
with the experimental I (0) and ξ .

5. Conclusions

The structural evolution of the gelling silica sols, prepared
by a two-step acid–base process of TEOS sonohydrolysis,
can be described by the evolution of a correlation function
given approximately by γ (r) ∼ (1/R2)(1/r) exp(−r/ξ),
where ξ is the structure correlation length and R is a chain
persistence length. The characteristic length ξ grows following
approximately a power law with time t as ξ ∼ t1, after an
initial period in which the growth of ξ is slower, while R
remains undetermined but has a practically constant value with
time, except for a small relative increase of about 15% in the
initial period.

The characteristics of the scattering from the gelling
system are typical of systems built up by polydisperse
coils of linear chains or branched polycondensates of
random f -functional units, but the scattering from random
branched polycondensates is indistinguishable from that of
the most probable distribution of polydisperse coils of
linear chains.

The structural evolution with time is compatible with
an aggregation process by a phase separation by coarsening.
The mechanism of growth seems to be more rapid than
others typically observed for pure diffusion controlled cluster–
cluster aggregation mechanisms. This suggests that physical
forces (hydrothermal forces) could be actuating together with
diffusion in the gelling process of this system. However,
the data apparently do not support a spinodal decomposition
mechanism, at least starting from the stable acid sol
studied here.
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